$\qquad$
You must show appropriate work for credit.

1) The electrical potential $V$ is given by $V=f(x, y, z)=5 x^{2} y+x y z$.
a) Find the rate of change of the potential at $(1,2,3)$ in the direction of $\mathbf{v}=4 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$.
b) In which direction does $V$ change most rapidly at this point?
c) What is the most rapid rate of change at this point?
2) The pressure $P$ (in kiloPascals), volume $V$ (in liters) and temperature $T$ (in Kelvins) of a mole of an ideal gas are related by the equation $P V=8.31 T$. The pressure is increasing at a rate of $0.05 \mathrm{kPa} / \mathrm{s}$ and the temperature is increasing at a rate of $0.15 \mathrm{~K} / \mathrm{s}$. Find the rate of change of volume when the pressure is 20 kPa and the temperature is 320 K .
3) Find the point on the plane $x-y+z=4$ that is closest to the point $(1,2,3)$. (hint: minimize the square of the distance).
4) Use the method of Lagrange Multipliers to find the extrema of $f(x, y)=x^{2} y$ on the ellipse $x^{2}+2 y^{2}=6$. Make sure that you show that you have considered all relevant cases.

Math 253 - Fall 2008 Test 2 (14.3-15.3)
You must show appropriate work for credit.

1) The electrical potential $V$ is given by $V=f(x, y, z)=5 x^{2} y+x y z$.
a) Find the rate of change of the potential at $(1,2,3)$ in the direction of $\mathbf{v}=4 \mathbf{i}+2 \mathbf{j}-4 \mathbf{k}$.
b) In which direction does $V$ change most rapidly at this point?
c) What is the most rapid rate of change at this point?
2) The pressure $P$ (in kiloPascals), volume $V$ (in liters) and temperature $T$ (in Kelvins) of a mole of an ideal gas are related by the equation $P V=8.31 T$. The pressure is increasing at a rate of $0.05 \mathrm{kPa} / \mathrm{s}$ and the temperature is increasing at a rate of $0.15 \mathrm{~K} / \mathrm{s}$. Find the rate of change of volume when the pressure is 20 kPa and the temperature is 320 K .
3) Find the point on the plane $x-y+z=4$ that is closest to the point $(1,2,3)$. (hint: minimize the square of the distance).
4) Use the method of Lagrange Multipliers to find the extrema of $f(x, y)=x^{2} y$ on the ellipse $x^{2}+2 y^{2}=6$. Make sure that you show that you have considered all relevant cases.
